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A METHOD FOR THE APPROXIMATE SOLUTION OF A TWO-PHASE STEFAN 

PROBLEM WITH REVERSE MOTION OF THE FRONT 

R. I. Medvedskii UDC 536.42:551.34 

Determination of the trajectory of a phase transition front moving in a forward or 
reverse direction is reduced to the solution of an ordinary differential equation. 
A numerical check of the results shows the method to be highly accurate. 

In the design of various apparata and structures, for example, wells in regions con- 
taining frozen rocks, the operation of which leads to a change in the aggregate state of the 
material in the surrounding medium, one is obliged to make numerous calculations of the 
motion of a phase transition boundary. Use of difference methods [1-3] for these purposes 
leads to the expenditure of a large amount of computer time, particularly in the case in 
which the process involves an infinite region. In this situation expenditures of computer 
time increases most perceptibly when solving problems involving a reverse front owing to the 
fact that the boundary of the computational domain must be moved especially far away. Reduc- 
tion of an infinite domain to a finite one through a change of coordinates, for example, 
through use of the method indicated in [4], does not in practice decrease the volume of cal- 
culations. Moreover, as computational practice shows, difference methods cease to be suit- 
able when the temperature of the initial phase is considerably below or above the tempera- 
ture of the transition phase and the development of the process proceeds at extremely slow 
rates. Under these circumstances the role of approximate methods in carrying out engineering 
calculations is enhanced, particularly methods based on L. S. Leibenzon's integral formula- 
tion of the problem [5, 6]. This formulation, when used with suitable approximations of tem- 
perature profiles, makes it possible to obtain acceptable accuracy in determining the dynamics 
of the front of phase transitions and, in the first place, is interesting for practical 
applications. The version of the integral balance method presented in [6] is more effective, 
in this respect, than that given in [5] since in it terms not specified by the boundary con- 
ditions were excluded. This exclusion was effected in [6] by applying an operation of double 
integration; however, as shown in [7], the same result can be obtained by the use of Green's 
transformation. This modified version of the integral balance method, when applied to a one- 
phase problem, guarantees high accuracy in replacing the true temperature distribution by a 
quasistationary one, even for large Stefan numbers [7]. Obviously, this conclusion can also 
be carried over to the case of the two-phase problem since in the thermal balance integral 
the contributions from each of the phases are taken into account independently of one 
another. 

In what follows, a modified integral balance method is developed for the case in which 
the motion of the phase front commences after a preliminary initial heating of the region 
and also when its forward motion changes to a reverse motion after thermal action ceases. 
In all these cases the trajectory of the front is described by a first order ordinary dif- 
ferential equation. 

J 

i. First of all, we obtain the differential equation for the case of an exterior single- 
phase Stefan problem with convective heat exchange at the moving boundary. After dimensional- 
ization, this problem may be reduced to solving the heat-conduction equation in the region 
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00, 
A0t--  ; A0 = - -  

1 O O0 
- -  A (~) 

A (~) at a[ (1) 

with the boundary conditions 

[ = 0 :  O~ = 0 ;  
( O0~ ] 

-- KIA (0) \ T  / n:  ~IA (0) -~- K~q~ (,v); 

- - A ( l )  c~O~ - ~ -  + h% = he (~); 

=0: o(0)=I. 
Here A(~) = ~k, where k = 0, I, 2 for plane-parallel, axial, and central symmetry, respec- 
tively; K~ and K2 are constant Stefan parameters; qn(T) is the heat output, which can depend 
both on ~ as well as on T; h is a convective heat-exchange parameter (Biot number); ~(~) is 
the relative temperature of the medium. In the successive results allowance is made for the 
possibility of having h = ~, in which case relation (3) becomes a boundary condition of the 
first kind and ~(T) then denotes temperature of the wall itself. 

Multiplying differential equation (i) by the function A($)u(~) 

(2) 

(3) 

(4) 

ct~ ], (5) 

we i n t e g r a t e  t h e  r e s u l t  f r o m  $ = 1 t o  ~ = n .  A f t e r  s i m p l i f i c a t i o n s ,  we t h e n  o b t a i n  t h e  e q u a -  
t i o n  

' / a0 i  \ 
a~ a' 

The first term on the right is eliminated through use of condition (22) and the latter equa- 
tion is then rewritten in the form of the differential equation 

dr + ~u (0) A (0) (6)  
dv dN 

dq ~ (x) - -  eu (0) qn (~) 

where 

~= .[ u(~)OiA([)d[; e=K~/K,; ~=I/K~. 
1 

If the dimensionless temperature of the medium behind the perturbed wall is constant, 
we can then always arrange to have it equal to one, ~(T) = i, through an appropriate normaliza- 
tion. Replacing e, on the right side of Eq. (6) by the stationary profile 

%=o~; %=1 u(D (7) 
u ( 0 ) '  

we o b t a i n  

i[ ] 
%= [ u(D 1 -  u(j)_) A(Do~=J1. (s) 

�9 ; u(0) 

E q u a t i o n  ( 6 ) ,  w i t h  ~x r e p l a c e d  by  J x ,  c a n  t h e n  b e  s o l v e d  a s  an  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n  
with the initial condition T = 0 for ~ = i. 

If ~(~) varies with time, e, is then replaced by the function ~(T)es(~ , n), and then ~, = 
@(T)J,. In this case, obtaining a numerical solution becomes somewhat involved. 

For the single-phase problem e = 0 and the equation is easily integrated, resulting in 
the following relationship between T and n: 
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Fig. 1 Fig. 2 

Fig. i. Phase transition front position n versus time T for 
the plane-parallel geometry at different perturbation functions 
at the boundary. Curves, direct solution; points, solution from 
the differential equation with Kz = i: curve I: ~(T) = 1.5 sin 
(0.05~); curve 2: ~(T) = 0.3 in (i + T); curve 3: ~(~) =0.03~. 

Fig. 2. Phase transition front trajectory for planar wall (i), 
exterior of cylinder (2), and sphere (3) for unit temperature 
on the perturbing boundary in the initial period with subse- 
quent cessation of thermal action. Curves, direct solution; 
points, solution from the differential equation with KI = 0.95, 
Ka = 0.272, ~ = 0.663, h = 5. 

It becomes especially simple for the plane-parallel case A(~) = i when a condition of the 
first kind is specified on the boundary. Then, letting h = ~, we obtain from Eq. (5) the 
result u(~) = ~ -- i, which allows us, based on relations (7) and (8), to find 

m 

0 

Here ~(T) corresponds to the dimensionless temperature of the wall proper. 

Figure i shows the results obtained when calculations made using this equation are com- 
pared with those using the method given in [3] for three different temperature functions on 
the planar wall: ~(T) = 1.5 sin 0.05T; ~(T) = 0.3 in (I + r); ~b(T) = 0.03T, for a sufficiently 
large value of the parameter K~ = i. As can be seen, divergence of the results is minimal 
and completely acceptable for engineering purposes. 

In the case of the single-phase problem, with the last approximation ~(T) = 1 - 0.2~, a 
check with the numerical results given in [8] confirms its high accuracy up to Kz = i0, con- 
siderably above the value of this parameter encountered in practical applications. 

I when the 2. We consider now the situation, during the initial time interval 0 ~T ~ T,, 
thermal action on the wall is defined by a condition of convective heat exchange with the 
medium with a constant temperature, which, for convenience, we can take equal to i. In this 
time interval the boundary conditions are the same as those in relations (3) and (4) for 
~(T) = i, while the motion of the front is described by Eq. (6). Next, starting from some 
time T,, thermal action on the wall ceases and in the following time interval the boundary 
condition (3) is replaced by the following: 

001 =0; 
~ ]: r > r I. ( 3 a )  

Using the ordinary heat-balance equation, we find 
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The first term on the left side of this equation may be expressed in terms of the second 
boundary oondition (relation (2)); the second term, in accordance with relation (3a), is 
equal to zero. Consequently, for T > ~, we can give it the form 

1 ~ A ( ~ ) - - e q ~ ( z ) =  d ~1 ~-----'T- "[ O,Ad~ 
1 

(9) 

and consider it as the energy equivalent of the differential condition (3a). 

Using the resulting integral conditions on the boundary, we can, without noticeable 
error, replace the true temperature profile in the phase adjacent to the wall by an approxi- 
mate profile. In order for it to be consistent with the profile used earlier for this pur- 
pose, namely, the profile (7), we take it in the form O, = ~(~)0s, differing from the latter 
only by the variable factor ~(T). From the compatibility condition it follows that ~(y,) = 
1, while elsewhere the function ~(~) is unknown and remains to be determined. 

Substitution of the given profile into Eqo (9) yields 

1 a d ( iO)  

where J~  ! [  1 uU(~) J A(~)d~O|) - is a function depending only on ~. 

Integrating Eq. (i0) with respect to the time, we obtain, upon noting that r = I, 

- - , , , ,  .[ A (~) a~ - ,]" q. (~) d~ 
111 "gl 

- -  ~ (T) Jo (q) - -  Jo Oh)- 

This equation can be given the following compact form: 

~ (T) -= 1 + ID  01,) -- D 01)]/Jo (~), 
where 

(li) 

13 "[ 

D 01) = Jo (q) -}- ~ .[A (~) O~ -l- e~q, (~) d~. 
1 0 

If qn(T) depends not only on T but also on ~, the latter may then be regarded as a function 
of T and may be determined through a numerical integration of the equation. 

Noting that d~x/dn = d/dn($Jt) = d/d~(~J0)Jl/J0 and that ~Jo may be found from Eq. (i0), 
we obtain the following after substituting it into the right side of equation (6) and trans- 
forming the result: 

d_.__~v : ~C (11) -b ~A (~) B (~) , (12) 
d~l ~ --  eB (B) q, (~) 

where 

B01)=u(~ )  J~0]!--~0. C ( ~ ) =  Jo d J~ 
Jo(~) ~ ' d~ Jo 

Together with Eq. (ii), this differential equation allows us to determine the dependence 
of ~ on n in the time interval T~t, following which the function ~(~) can be found from 
Eq. (ii). 

The quality of the approximate solution of the given problem based on the differential 
equation (12) is considered below along with an approximation for the output of heat from the 
front into the depth of the infinite region. 

3. In order to generalize the method to the infinite region ~ ,  initially occupied 
by some one phase, it is necessary to find the amount of thermal flow on the boundary for a 
change in the aggregate state and to substitute it into the differential equation (6) for a 
forward motion of the front, or into Eq. (12) for frontal motion in the reverse direction. 
It is obvious that this flow is determined by the gradient of the dimensionless temperature 
e2, which satisfies the heat conduction equation 
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A % =  13 00~ . 
O-c ' r l ~ < ~ 1 7 6  (13)  

with boundary conditions 

= ~I: Os=O; ~ -- oo: 0~------I; �9 =0: Os___ 00 (~). (14) 

For an exact solution of the problem the condition on the moving boundary is supplemented by 
the heat balance (second condition in relations (2)), which includes the desired thermal flow. 
Moreover, e~ is the temperature distribution in the region ~ ~i at the start of melting, 
which, for example, is stipulated by preliminary initial heating in the presence of thermal 
insulation on the perturbed wall ~ = i. In the absence of thermal insulation (for a boundary 
condition of the first kind) melting takes place instantaneously without preliminary initial 
heating of the region and then O~ = --i. In this particular case the exact temperature 
profile can be replaced by an approximate one, thereby solving the boundary-value problem 
(13), (14) under the assumption that the left boundary ~ = n is fixed. Then, for the plane- 
parallel and centrally symmetric cases the temperature distribution in the region g ~ n will 
be given by the expressions 

02 (~, x) = erfc 2 V ' ~  ' ( 15 )  

rl erfc ~--rl  1. 
0~ (~, "0 - -  ~ 2 ~,' "~/'--'~ 

From this we then obtain, for the thermal flow on the boundary ~ = n, the following expres- 
sion: 

qn (,r) = ]/// l I l /  n""~; qn ('t:) = t1 + rl z (16) 
J~T 

for the plane-parallel and spherical heat distributions, respectively. For theplane-parallel 
case, under the same assumptions, the heat output is given to high accuracy by E. B. Chekal- 
yuk's formula [9]: 

qn (,r) = ln-1 [ 1 - } - / - - ~ -  ].  (17) 

During the forward motion of the front Eqs. (16) and (17) yield somewhat lowered values for 
the heat output at the moving boundary when compared with the exact solution; this can be 
shown with the aid of the comparison theorem from [i0]. 

To improve these approximations we make use of the thermal balance equation for the 
region occupied by the initial phase: 

d 

T h i s  e q u a t i o n  may be o b t a i n e d  f rom the  h e a t - c o n d u c t i o n  e q u a t i o n  (13) by m u l t i p l y i n g  i t  by 
A(~)dC and t h e n  i n t e g r a t i n g  o v e r  t h e  l i m i t s  o f  t h e  a s s i g n e d  r e g i o n .  Upon s u b s t i t u t i n g  i n t o  
Eq. (18) t h e  a p p r o x i m a t i o n s  f o r  t h e  t e m p e r a t u r e  p r o f i l e  o b t a i n e d  e a r l i e r ,  we o b t a i n  t he  f o l -  
lowing  e x p r e s s i o n  f o r  t h e  h e a t  o u t p u t  a t  t h e  moving b o u n d a r y :  

(~) ~ BqA (~) + q, (T). (19) 

As can be s e e n ,  t h i s  new a p p r o x i m a t i o n  d i f f e r s  f rom t h o s e  p r e s e n t e d  e a r l i e r  o n l y  by t he  
a d d i t i o n  of  t he  t e rm  8hA(n) .  Use o f  t h i s  a p p r o x i m a t i o n  amounts  to  r e p l a c i n g  t h e  p a r a m e t e r  

i n  a l l  t h e  e x p r e s s i o n s  d e r i v e d  e a r l i e r  by t h e  v a l u e  ~ = (1 + 8KB)/Kx; a t  t h e  same t i m e ,  t he  
e x p r e s s i o n s  f o r  qq(T)  a r e  u n d e r s t o o d  to  be t h o s e  i n d i c a t e d  i n  e q u a t i o n s  (16) and ( 1 7 ) .  O t h e r -  
w i s e ,  t h e  d i f f e r e n t i a l  e q u a t i o n  (6) or  (12) and t h e  e x p r e s s i o n s  a p p e a r i n g  i n  i t ,  symbol  f o r  
symbol ,  s t a y  t h e  same. 

We remark  t h a t  e x p r e s s i o n s  o f  t y p e  (19) f o r  p l a n e - p a r a l l e l  f l o w  were  a l s o  used  i n  [ 6 ] .  

In  a c c o r d a n c e  w i t h  t he  e x p r e s s i o n s  g i v e n ,  t h e  h e a t  o u t p u t  ( 1 6 ) ,  ( 1 7 ) ,  ( 1 9 ) ,  a t  t h e  i n -  
s t a n t  t h a t  m e l t i n g  commences and f rom which  i n s t a n t  t ime  T i s  r e c k o n e d ,  i s  i n f i n i t e ;  t h i s  i s  
c o m p a t i b l e  o n l y  w i t h  a b o u n d a r y  c o n d i t i o n  o f  t h e  f i r s t  k in d  a t  t h e  p e r t u r b e d  w a l l .  In  t he  
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event of preliminary initial heating of the region up to the start of melting, the expression 
to be used for the heat output is q~(m + To), where To is determined from a condition of com- 
patibility of the heat flows specified by this expression and the initial temperature distribu- 
tion 

( 800 
q~=l (To) ~A (~) 

If the preliminary initial heating is stipulated by a thermally insulated wall with heat 
transfer coefficient k, we can readily show that 

O0~ ] =ho To--T~ h 
- -  A (~) O~ ]~=1 T ~ - -  T~ - -  s ' 

where ho = kro/X2; h = kro/Xx; r = K2/K~; ro is a characteristic scale, for example, the well 
radius; Xi is the phase thermal conductivity coefficient, with subscript 2 corresponding to 
the initial phase. 

By the same token, we obtain the following expressions for the compatibility time xo 
based on the expressions adopted for the heat output: 

for plane-parallel and spherical geometries, and 

for cylindrical geometry. 

Figure 2 shows results of calculations made using our method in comparison with the 
direct solution using the method in [3] for a planar wall, the exterior of a cylinder, and a 
sphere. The following values of the dimensionless parameters were used in our calculations: 
KI = 0.95; Ka = 0.272; S = 0.667; h = 5. We remark that for the time Tx of thermal action 
cessation we used a somewhat smaller value for the planar wall than we did for the cylinder 
and sphere in order to accommodate results of a comparative calculation on one graph. 

In a comparison of the front trajectories for the various kinds of symmetry, notice 
should be taken of the abrupt slowing of the rates of motion and the steepness of the reverse 
portion of the trajectory in the case of the sphere. This is due to the fact that the spheri- 
cal front is bounded by a specific coordinate nst = 1 + e/r h/l + h, whose value is easily 
obtained by examining the denominator of equation (6) following a disclosure of the functions 
appearing in it in connection with a given concrete case, 

As is evident from Fig. 2, our method gives roughly the same results as the method in- 
volving a direct solution of the Stefan problem using finite differences [3]. Divergence in 
the calculated results is minimal and not greater than 5%. 

The method presented here was used recently over a period of several years to solve 
various problems connected with the thawing of frozen rocks and their refreezing; among the 
problems considered was that of the ablation of rocks during the channeling of wells, in which 
the method invariably proved its effectiveness. This furnishes a basis for recommending it 
for broader usage. 

NOTATION 

6, T, dimensionless distance and time; n, phase transition front coordinate; D = dn/dT; 
el, 02, relative temperatures of the first and second phases; B, thermal diffusivity ratio 
for the first and second phases; Ae, Laplacian. 
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COEFFICIENT INVERSE HEAT-CONDUCTION PROBLEM 

E. A. Artyukhin and A. V. Nenarokomov UDC 536.24 

The computational algorithm and the results are given for the solution of the in- 
verse problem of determining the total set of coefficients of the inhomogeneous 
quasilinear heat-conduction equation. 

Recently, nonsteady experimental--computational methods based on the solution of the coef- 
ficient (in the terminology of [l]) inverse heat-conduction problems (IHP) have been suf- 
ficiently widely used to determine the thermophysical characteristics of various structural 
and heat-protective materials. Expansion of the range of practical application of such 
methods is directly associated with the development of effective computational algorithms for 
the solution of nonlinear multiparameter inverse problems in which a whole set of unknown char- 
acteristics is determined from the data of a single nonsteady experiment. This type of al- 
gorithm may ensure maximum information retrieval from thermophysical experiments. 

Consider a one-dimensional heat-transfer process with a mathematical model in the form 
of a boundary problem for the quasilinear inhomogeneous heat-conduction equation 

C(T) a ToT Ox~ (%(T) 8--~x !, +S(T), x, ~ C Q = ( O ,  b )x (O,  T], (1) 

T(x, 0 ) = T  o(x), xG.[0, b], (2) 

?I)~(T(0, ~)) aT(O, ,) q-.UlT(O, ~)=g l (~ ) ,  ~C(0, %,1, (3) 
ax 

yoL (T (b, "c)) aT (b, T) (4) Ox -}- I~'-T (b, T) -~ go_ (T), ~ C (0, %,,], 

where  T o ( x ) ,  g , ( z ) ,  g=(z)  a r e  known f u n c t i o n s ;  b ,  Zm, V*, V2, Yx, Ya a r e  s p e c i f i e d  numbers .  

Suppose that thermosensors are placed at some number (N + 2) of points in the interval 
[0, b] with coordinates x = Xi, i = I, N, 0 = Xo < XI < ... < X N < XN+I = b, and dynamic 
temperature measurements are undertaken 

TexP(Xi, "t)= fi(T), i = 0, N q - I .  (5) 

It is assumed here that, if a boundary condition of the first kind is imposed at any boundary, 
the functions gj (~), j = i, 2 in Eqs. (3) and (4) are formed on the basis of the data of the 
corresponding measurements gx(T) = fo(T), g=(T) = fN+x(~)- Depending on a priori information 
on the characteristics C(T), %(T), and S(T), different formulations of the coefficient IHP are 
possible: the derivation of any one characteristic or some set of characteristics simultane- 
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